Generation of unit impulse, unit steps, advanced & delayed signal, uni polar, bipolar saw tooth & square wave

PROGRAM 1:
OBJECT: Generate a unit step sequence with n sample. Generate a sinusoidal sequence with 1 period. Use the function sin(0.1*pi*n). Generate an exponential sequence (0.8)^n. Add two sinusoidal sequences sin(0.1*pi*n) and sin(0.2*pi*n). Use “subplot” to plot all the sequence.

SOURCE CODE:
s=input('Enter the no. of samples: ');
n=0:1:(s-1);
y1=[ones(1,s)];
subplot(2,2,1);
stem(n,y1);
y2=sin(0.1*pi*n);
subplot(2,2,2);
stem(n,y2);
y3=exp(.8.^n);
subplot(2,2,3);
stem(n,y3);
y4=sin(.1*pi*n);
y5=sin(.2*pi*n);
y6=y4+y5;
subplot(2,2,4);
stem(n,y6);

OUTPUT:
Enter the no. of samples: 40
OUTPUT GRAPH:
Add two sinusoidal sequences sin(0.1*pi*n) and sin(0.2*pi*n).
Figure 1: Generation of a sinusoidal, exponential, add two sinusoidal sequences.

PROGRAM 2:
OBJECT: Generate a unit impulse sequences ∂0 (n+4) and ∂0 (n-3).
SOURCE CODE(PART-I):
n=-10:20;
x=[zeros(1,6) 1 zeros(1,24)]; % zeros(N) is an N-by-N matrix of zeros.
stem(n,x);
xlabel('time index n');
ylabel('amplitude');
title('advanced impulse response');
axis([-10 20 0 1]);

OUTPUT GRAPH:
Generate a unit impulse sequences ∂0 (n+4) and ∂0 (n-3) (Part-I).
Figure 2: Unit impulse sequences (Part-I).
SOURCE CODE(PART-II):
z=-10:20;
x=[zeros(1,13) 1 zeros(1,17)];
stem(n,x);
xlabel('Time index n');
ylabel('Amplitude');
title('Delayed impulse response');
axis([-10 20 0 1]);

OUTPUT GRAPH:
Unit impulse sequences (Part-II)
Figure 3: Generate a unit impulse sequences ∂0 (n+4) and ∂0 (n-3) (Part-II).

Index of DSP Lab Manual.